Matching real and predicted residential heating energy and comfort in Belgium

Ghent University (UGent)
Faculty of Engineering & Architecture
Building Physics, Construction & Services Research Group

Marc Delghust - Jelle Laverge
UGent
Research Group
NUMERICAL SIMULATIONS using – developing - coupling

EXPERIMENTS & MEASUREMENTS on site - in lab

approaches
outreach

• **Governmental policy-making**
 - EPBD
 - standardisation
 - quality of workmanship

• **Industry:**
 - R&D
 - control algorithms
 - performance assessment

• **Dissemination**
 - stakeholders
Building stock

Random sampling

Detailed cases
Field data
Neighbourhoods: from old to new
Neighbourhoods: renovation

Demonstration projects: monitoring + data collection & analysis
Data analysis
Smartmetering: *from static to dynamic*

IEA-EBC Annex 58
Reliable Building Energy Performance Characterisation Based on Full Scale Dynamic Measurements
EPBD & surveys: statistical analysis
Theoretical vs. real energy use

real gain?

$Q_{H,\text{theoretical}} [\text{kWh}/(\text{m}^2\cdot\text{yr})]$ vs. $Q_{H,\text{real}} [\text{kWh}/(\text{m}^2\cdot\text{yr})]$

Theoretical gain

real gain
Theoretical vs. real energy use

- **Q_{H, real} [kWh/(m² yr)]**
- **Q_{H, theoretical} [kWh/(m² yr)]**
- **Primary heating setpoint [°C]**

Graphs and charts
- Scatter plots showing the relationship between daily heating hours and primary heating setpoint.
- Line graphs illustrating the percentage distribution of energy use.
- Bar charts comparing theoretical and real energy consumption for various standards.
Modelling
Models:

1-zone: FL EPB
Models:

1-zone: FL EPB, corrected ventilation
Models:
Multi-zone (corrected ventilation & heating profiles)
building stock, single-zone

typologies, multi-zone

multiple selections

multiple fittings
<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>671</td>
<td>2627</td>
<td>13211</td>
</tr>
<tr>
<td></td>
<td>0,63%</td>
<td>2,47%</td>
<td>12,42%</td>
</tr>
<tr>
<td></td>
<td>361</td>
<td>2552</td>
<td>14704</td>
</tr>
<tr>
<td></td>
<td>0,34%</td>
<td>2,40%</td>
<td>13,82%</td>
</tr>
<tr>
<td></td>
<td>194</td>
<td>1342</td>
<td>5808</td>
</tr>
<tr>
<td></td>
<td>0,18%</td>
<td>1,28%</td>
<td>5,46%</td>
</tr>
<tr>
<td></td>
<td>11595</td>
<td>33531</td>
<td>7385</td>
</tr>
<tr>
<td></td>
<td>10,90%</td>
<td>31,52%</td>
<td>6,94%</td>
</tr>
</tbody>
</table>
scenario analyses

building stock
Matching real and predicted residential heating energy and comfort in Belgium

Ghent University (UGent)
Faculty of Engineering & Architecture
Building Physics, Construction & Services Research Group

Marc Delghust - Jelle Laverge
UGent