

Presentation at International Workshop to prepare an IEA Energy in Buildings and Communities Programme (EBC) Annex on Building Energy Epidemiology: Analysis of Real Building Energy Use at Scale

London, 1 October 2015

# Matching real energy use data with modeling data in building stock models

#### Dr. Martin Jakob

TEP Energy, Zurich (on behalf of Swiss Federal Office of Energy) in Cooperation with Chalmers University

#### **TECHNOLOGY ECONOMICS POLICY - RESEARCH AND ADVICE**

## **TEP Energy** Technology, Economics, Policy – research and advice



# Evaluating options and limitations of current and future policy targeting the building sector

Problem setting and research questions

- 1. Performance gap 1: Does actual saving of energyefficiency measures meet expectation (e.g. from calculation)?
  - Hypothesis: No => scientifically to be verified
  - What are the reasons for deviations?
- 2. Performance gap 2:
  - Do policy instruments (PI) deliver (as expected)?
  - Observation of related activity (e.g. retrofits) at building/owner level
  - What are the causal effect of policy measure on (retrofit) behaviour?
  - Are there any desired or undesired side-effects?
  - Concretely what was and could be the socio-economic impact of PI?
- 3. Given the findings, which recommendations to be drawn with regard to the design of policy instruments?

### Problem setting and research questions Performance gap 1 at the scale of individual buildings

- 1. Does actual saving of energy-efficiency measures meet expectation (e.g. from calculation)?
  - Hypothesis: No => scientifically to be verified
  - What are the reasons for deviations?
  - What are the causal effect of policy measure (retrofit) behaviour?





### Problem setting and research questions Performance gap 1 at the scale of individual buildings

Performance gap 1: Does actual saving of energy-efficiency measures meet expectation (e.g. from calculation)?

- Hypothesis: Calculations from SIA 380/1 and EN ISO 13790 are
  - overestimating consumption of non-insulated buildings
  - underestimating consumption of nearly zero energy buildings



- Implication, bottom-line
  - Calculations too optimistic in case of MEPS
  - Effects of energy-efficiency measures overestimated

# **Problem setting and research questions**

Performance gap 1: at the scale of individual buildings

Performance gap 1: usual suspects (of potential reasons)

1. Implementation quality (of energy-efficiency

measures)

- Indoor conditions (before and after), delta T
- 3. Air exchange rates
- Inefficient operation, non-adjusted controls
- 5. Calculation method (buildings physics, thermal bahaviour, delta U)



# **Problem setting and research questions**

Performance gap 2: Policy instruments - actual vs. expected

#### Observation of retrofit activity at building/owner scale



- Data from two building owner surveys
- Periodic update would be needed to establish monitoring
- What are the drivers of retrofits? Role of policy instruments?

# **Problem setting and research questions** Building stock

Performance gap 2: Does yield of retrofit activities meet expectation (e.g. obtained from building stock modelling)?

- Many drivers to be considered, each of them having <u>uncertainties</u>
  - Construction, demolition and retrofit activity
  - State of buildings, use of buildings and user behaviour
  - Resulting useful energy of new, <u>existing and retrofitted</u> buildings
  - Heating system <u>retrofit activity</u> and substitution effects and η
- Implication, bottom-line
  - Increasing difficulty to relate reasonable model input to aggregate energy statistics



#### Bring together individual and stock data Issues

- Increasing the level of detail
  - $\rightarrow$  from building cohorts to individual buildings
- Adding more building types:
  - $\rightarrow$  from residential buildings to the complete building stock
- Use of buildings, use of energy
  → economic sub-sectors, end use categories
- Spatial differentiation
  - $\rightarrow$  from graphs for aggregates to maps
- Advanced Calibration
  - $\rightarrow$  from building stock calibration to individual buildings
- Decision modelling and economics
  - $\rightarrow$  from assumptions at aggregates scale to discrete choice modelling
- Adding material consumption
  - $\rightarrow$  from building use phase to the complete lifecycle

Implementation ongoing within several ongoing Swiss and international projects

# Bring together individual and stock data Approach



Source: Nägel 2014, Nägeli, Jakob et al. 2015

## Bring together individual and stock data Approach



Source: Nägel 2014, Nägeli, Jakob et al. 2015

### Enhanced building stock modeling Bring empirical data to building stock model

Example: Derive retrofit probability from retrofit activity

Retrofit rate (empirical) of window replacement



Retrofit probability (model) of window replacement



Source: Jakkob et al. (2014), Jakob, Unterhollenberg et al. (2015).

# Enhanced performance of individual building stock model

#### Simplified (traditional)

energy bottom-up model at scale of aggr. cohorts/archetypes

#### Advanced (novel) building stock model at scale of individual buildings



Source:

Die städtischen Gebäude der Stadt Zürich bis 2050

## Integrated and scalable approach Advantage

- Many types of <u>data from different sources and scale</u> is incorporated: building state, owner type, individual/aggregate consumption
- More <u>empirical data improves modelling</u> (rather than create contradiction), missing data may be imputed by stochastic approaches (distributions)
- Links <u>individual decisions (micro) to aggregated observables (macro)</u>: more realistic representation (average of individuals <> individual average)
- Links several disciplines: economics, policy analysis, building physics, technology and engineering
- Model approach and output <u>may be adjusted according to specific need</u>
  - Distribution instead of average
  - Coherent representation of past (ex-post verification) and future (ex-ante estimation)
  - Energy, Load, Emissions, Material flows, Costs and benefits, Technology markets, Policy impact

#### Better to relate reasonable model input to aggregate energy statistics

### Building stock model (city of Zurich) Useful and final energy demand, Efficiency scenario 2050



## **Literature and links**

- www.tep-energy.ch
- www.forecast-model.ch
- Jakob M. et al. (2014) Energetische Erneuerungsraten im Gebäudebereich – Synthesebericht zu Gebäudehülle und Heizanlagen
- Jakob M., Fürst M., Martius G. (2013). Die städtischen Gebäude der Stadt Zürich bis 2050 – Eine ergänzende Abschätzung auf Grundlage des Gebäudeparkmodells mit Bezug zum Energieversorgungskonzept 2050. TEP Energy im Auftrag des Amts für Hochbauten der Stadt Zürich
- Nägeli, Jakob et al. (2015). A BUILDING SPECIFIC, ECONOMIC BUILDING STOCK MODEL TO EVALUATE ENERGY EFFICIENCY AND RENEWABLE ENERGY. In: Proceedings of CISBAT Conference.